0% Complete
صفحه اصلی
/
دهمین كنفرانس بين المللی مهندسی صنايع و سيستم ها
Generative AI Strategies to Enhance Car Detection Under Adverse Weather Conditions
نویسندگان :
Sina Khoshgoftar
1
Mehrdad Kargari
2
Reza Vatankhah
3
1- دانشگاه تربیت مدرس
2- دانشگاه تربیت مدرس
3- Nottingham Trent
کلمات کلیدی :
object detection،adverse weather،generative ai،car detection،generative artificial inteligence،abnormal weather condition
چکیده :
Computer vision is a pivotal technology of the current decade, enabling computers to interpret visual inputs, extract information, and make informed decisions. Core challenges in computer vision encompass detection, segmentation, and classification, with detection being crucial for applications like transportation systems. However, adverse weather conditions, such as rain, snow, and fog, pose significant challenges for object detection systems in real-world environments. Traditional approaches often incorporate denoising or enhancement modules to preprocess images. An alternative strategy involves training models using a mix of real and synthetic data. This method not only reduces data processing costs but also enhances model adaptability to various conditions. This paper focuses on enhancing the robustness and accuracy of car detection models under adverse weather conditions using the YOLO (You Only Look Once) object detection model. By leveraging generative AI to create synthetic weather condition data based on real images captured from city surveillance cameras, this paper developed a comprehensive dataset for training. Our contributions include a generative AI pipeline to simulate various weather scenarios and the integration of this synthetic data with real data to train the YOLO model. The results demonstrate improved performance and reliability of car detection systems in challenging environments, highlighting the efficacy of combining synthetic and real data for robust computer vision applications.
لیست مقالات
لیست مقالات بایگانی شده
A novel model for staff scheduling problem under COVID-19 pandemic considering social distancing constraints: a case study
Ali Seifi - Hossein Karimi - Javad Mortazavi - Hashem Vahdani
Designing an efficient blood network using a multi-objective optimization model under uncertainty
Seyyed-Mahdi Hosseini-Motlagh - Mohammad Reza Ghatreh Samani - MohammadDanial Faraji
Improving airport passengers’ customer experience by utilizing the concept of Smart Airports - Case study of IKAC International airport
Pouria Shahmiri - Moslem Habibi
Sustainable development analysis of diesel, biodiesel and hydrogen in internal combustion engines
Mohammad Reza Saberi - Ehsan Naghashzadeh
یک مدل برنامهریزی تصادفی دومرحلهای برای تعیین ظرفیت و مدیریت تقاضای یک محصول پایدار جدید، با درنظرگرفتن سیاست انتشار کربن
متین قنبری - مریم عاملی
ارائه مدل اولویت بندی تامین کنندگان جهت ارزیابی های دوره ای در زنجیره تامین با رویکرد داده کاوی
آرش وفادار دوگاهه
Distributed Scheduling Problem Considering Network Configuration and Transportation Costs
Ghazal Ziadlou - Saeed Emami - Ebrahim Asadi-Gangraj
Modeling and Optimization of Penetration Depth Using Genetic Algorithm, Focusing on Submerged Arc Welding
Farhad Rahmati - Mobina Dehghan Khadar - Masood Aghakhani - Farhad Kolahan
برنامهریزی ارائه خدمات مراقبت در منزل در شبکه درمانی چند خدمتی با در نظر گرفتن بازدیدهای همزمان پرستاران و مراجعه به آزمایشگاه
صدرا باحجب محمدی - مریم رادمان
Investigating and Implementing a Token-based Blockchain Model to Manage and Encourage Water Consumption Reduction
Mohammadhossein Ghorbi - Amirhosein Mansouri
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.2.5