0% Complete
صفحه اصلی
/
نهمین كنفرانس بين المللی مهندسی صنايع و سيستم ها
Efficient Prediction of Heart Disease Using Machine Learning Algorithms With Winsorized and Logarithmic Transformation Methods for Handling Outliers Data
نویسندگان :
Omid Rahmani
1
Seyed Amir Mahdi Ghoreishizade
2
Mostafa Setak
3
1- دانشگاه خواجه نصیر الدین طوسی
2- دانشگاه صنعتی خواجه نصیرالدین طوسی
3- دانشگاه صنعتی خواجه نصیرالدین طوسی
کلمات کلیدی :
Heart disease،Winsorized and Logarithmic transformation methods،KNN،Wrapper and Embedded methods ،Naïve Bayes' Classifier،Decision Tree،Support Vector Classifier
چکیده :
Heart disease is a prevalent and life-threatening condition that poses significant challenges to healthcare systems worldwide. Accurate and timely diagnosis of heart disease is crucial for effective treatment and patient management. In recent years, machine learning algorithms have emerged as powerful tools for predicting and identifying individuals at risk of heart disease. This article highlights the importance of heart disease diagnosis and explores the potential of machine learning algorithms in enhancing the diagnosis of heart disease accuracy. This article presents a study to develop a model for predicting heart disease in the Cleveland patient dataset. The innovation of this research involved identifying and handling outliers data using Winsorized and Logarithmic transformation methods. We also used Wrapper and Embedded methods to determine the most critical features for diagnosing heart disease. In addition to the usual features, Exercise-induced angina and No. of major vessels were found to be important. We then compared the performance of four machine learning algorithms, including KNN, Naïve Bayes' Classifier, Decision Tree, and Support Vector Classifier to determine the best algorithm for predicting heart disease. The findings showed that the Decision Tree algorithm had the best performance with an accuracy of 97.95%. Overall, this study provides insights into developing an accurate model for predicting heart disease, which could help improve the diagnosis and treatment of this condition.
لیست مقالات
لیست مقالات بایگانی شده
Data-Driven Trade Promotion Optimization for Revenue Management in the Footwear Industry: A Case Study of Adidas and WestGear
Mohamad Amir Zeynali - Amir Albadvi
تجزیه و تحلیل کتابسنجی در مطالعات تامین مالی زنجیره تامین
محمدرضا زارع بنادکوکی - مسعود عادل نیانجف آبادی
Improvement of bagging by increasing probabilistic classifiers’ confidence in prediction: A Case study of SAPCO Parts Supply Company
Shima Malekpour - Shahrokh Asadi
بهینهسازی و طراحی شبکه زنجیره تأمین گردشگری کشاورزی پایدار
شیما رضائیان - محمدمهدی پایدار - سعید امامی
تجزیه و تحلیل بازده فرآیند برای پروفایل های خطی ساده خودهمبسته با استفاده از روش تبدیل
آیلین پاکزاد
یکپارچهسازی مسائل زمانبندی تولید چند کارخانهای و توزیع با در نظر گرفتن استراتژیهای کارآمد انرژی
امیررضا قیاسی - امیرسامان خیرخواه
Time Series Forecasting of Active Customers Using Sequence Models: A Comparative Evaluation
Alireza Dehghan - Moslem Habibi
A new interval type 2 best worst method and its application to healthcare waste treatment selection problem
Nastaran Goldani - Mostafa Kazemi
A Machine Learning-Based Framework for Multi-Class Prediction of Hepatitis C Severity Using Ensemble Techniques
Reza Shirazi Zadeh - Meysam Ghanbari Marvast
طراحی شبکه زنجیره تامین برنج بر اساس زنجیره های بلوکی: مطالعه موردی
فاطمه زهرا جانی روشن - علی دیوسالار - سعید امامی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2